高中物理(二上)
登入

HotEqn範例:常用符號 1

ElementsCode SyntaxExamples
Operators+ - * / = < > # ~ ; : , !
Subscripts_<eqn>
v_ov_o
W_{\infty\, \rightarrow\, R\; ,\; v\, =\, const.}W_{\infty\, \rightarrow\, R\; ,\; v\, =\, const.}
H_2 SO_4H_2 SO_4
^{235}_{\;92}U^{235}_{\;92}U
Superscripts^<eqn>
v^2v^2
v\, ^2v\, ^2
(R\, ^2\, +\, x\, ^2)^{3/2}(R\, ^2\, +\, x\, ^2)^{3/2}
R\, ^{n\, +\, 1}R\, ^{n\, +\, 1}
Fractions\frac<eqn numerator><eqn denominator>
\frac{2}{3}\frac{2}{3}
\frac{2}{\; 3\;}\frac{2}{\; 3\;}
\frac{m_1\, -\, m_2}{m_1\, +\, m_2}\, v_1\, +\, \frac{2\, m_2}{m_1\, +\, m_2}\, v_2\frac{m_1\, -\, m_2}{m_1\, +\, m_2}\, v_1\, +\, \frac{2\, m_2}{m_1\, +\, m_2}\, v_2
\frac{1}{x_0\, +\, \frac{1}{x_1\, +\, \frac{1}{x_2\, +\, \frac{1}{x_3}}}}\frac{1}{x_0\, +\, \frac{1}{x_1\, +\, \frac{1}{x_2\, +\, \frac{1}{x_3}}}}
Square Roots\sqrt<grp><eqn>
\sqrt{3}\sqrt{3}
\sqrt[3]{64}\sqrt[3]{64}
Sums\sum[_<eqn lower limit>][^<eqn upper limit>]
\sum_0^n\sum_0^n
\sum\, _0^n\sum\, _0^n
\Gamma(x)=\sum_{\nu=0}^{n-1} \frac{n!n^{x-1}}{x+\nu}\Gamma(x)=\sum_{\nu=0}^{n-1} \frac{n!n^{x-1}}{x+\nu}
y(z) = \sum_{n \ge 0} z^ny(z) = \sum_{n \ge 0} z^n
Products\prod[_<eqn lower limit>][^<eqn upper limit>]
\prod_1^3\prod_1^3
V_n^m=\prod_{i=0}^{m-1}(n-i) = \frac{n!}{(n-m)!}V_n^m=\prod_{i=0}^{m-1}(n-i) = \frac{n!}{(n-m)!}
\prod_{j\ge0} \left( \sum_{k\ge0} a_{jk}z^k \right)^{-1} = \frac {1} { \sum_{n\ge0} z^n \left( \sum_{k_0+k_1+\cdots=0} ^n a_{0k_0} a_{1k_1}\ldots \right)}\prod_{j\ge0} \left( \sum_{k\ge0} a_{jk}z^k \right)^{-1} = \frac {1} { \sum_{n\ge0} z^n \left( \sum_{k_0+k_1+\cdots=0} ^n a_{0k_0} a_{1k_1}\ldots \right)}
Integrals\int[_<eqn lower limit>][^<eqn upper limit>]
\oint[_<eqn lower limit>][^<eqn upper limit>]
\int_0^\infty\int_0^\infty
\int\, _0^\infty\int\, _0^\infty
\int\! _0^\infty\int\! _0^\infty
\oint_s\oint_s
\oint\, _s\oint\, _s
\oint\! _s\oint\! _s
2\sum_{i=1}^n a_i \;\int_a^b f_i(x)g_i(x)\,dx2\sum_{i=1}^n a_i \;\int_a^b f_i(x)g_i(x)\,dx
\int\frac{\sqrt{(ax+b)^3}}{x}\,dx\; = \;\frac{2\sqrt{(ax+b)^3}}{3} + 2b\sqrt{ax+b} +b^2\int\frac{dx}{x\sqrt{ax+b}}\int\frac{\sqrt{(ax+b)^3}}{x}\,dx\; = \;\frac{2\sqrt{(ax+b)^3}}{3} + 2b\sqrt{ax+b} +b^2\int\frac{dx}{x\sqrt{ax+b}}
I\,=\,\frac{1}{2\pi j}\oint_{|z|=1} E(z)E(1/z) z^{-1} dzI\,=\,\frac{1}{2\pi j}\oint_{|z|=1} E(z)E(1/z) z^{-1} dz
I=\int_B\; \int xy\;db\,+ \int\; \int_C\; \int xyz \;dcI=\int_B\; \int xy\;db\,+ \int\; \int_C\!; \int xyz \;dc

 

0最後修改紀錄: 2010/03/24(Wed) 16:14:18


尚未登入. (登入)

since 2011/06/20 18:23